Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(1): 21, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195606

RESUMO

Ovarian cancer is the most lethal malignancy among gynecologic cancers, and primary and secondary chemotherapy resistance is one of the important reasons for poor prognosis of ovarian cancer patients. However, the specifics of resistance to chemotherapy in ovarian cancer remain unclear. Herein, we find that the expression level of cellular retinoic acid binding protein 2 (CRABP2) is up-regulated in drug-resistant ovarian cancer tissues and cell lines, and the expression levels of CRABP2 in epithelial ovarian cancer tissues are closely related to tumor clinical stage and patients' prognosis, suggesting that CRABP2 plays an important role in the progression of ovarian cancer and the corresponding ability of tumor to chemotherapy. With the in-depth study, we demonstrates that CRABP2 is related to the high metabolic activity in drug-resistant cells, and all-trans retinoic acid exacerbates this activity. Further molecular mechanism exploration experiments show that CRABP2 not only up-regulates the expression level of HIF1α, but also increases the localization of HIF1α in the nucleus. In drug-resistant ovarian cancer cells, knocking down HIF1α can block the resistance of CRABP2 to chemotherapy drugs in ovarian cancer cells. Taken together, our findings suggest for the first time that CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. This study provides a possible molecular mechanism for drug resistance and a possible molecular target for clinical treatment of ovarian cancer.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Epitelial do Ovário , Linhagem Celular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
2.
Transl Cancer Res ; 12(10): 2572-2581, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969373

RESUMO

Background: Colorectal cancer (CRC) is the fifth most fatal cancer with a low probability of surgery and limited treatment options, especially in metastatic CRC. In this study, we investigated whether a mouse model of metastatic CRC mimicked tumor progression and evaluated the effect of 5-fluorouracil (5-FU) treatment. Methods: The CT26 mouse derived CRC cancer cell line was inoculated into mice, and the tumor bearing mice were divided into two groups: the experimental group and the control group. Micro-computed tomography (CT) and in vivo fluorescence were used to monitor the progression of metastatic CRC. A lung metastasis mouse model was employed to determine the effects of 5-FU on metastasis. Results: Bioluminescence imaging (BLI) and computed tomography (CT), as non-invasive methods, can continuously monitor the growth of tumors in vivo. Thus, imaging techniques can be used to qualitatively and quantitatively evaluate tumor growth indicators. 5-FU injected intravenously reduced the viability of metastatic CRC cells and resulted in prolonged survival compared to the control group. Moreover, the 5-FU-treated group had significantly reduced fluorescence of the CT26 cells in the lung. The results observed by BLI and CT are consistent with the tissue morphology and structure presented in pathological examination. Conclusions: In summary, a successful mouse model of CRC metastasis for clinical application has been established.

3.
Cancer Res ; 83(24): 4063-4079, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738413

RESUMO

Excessive fructose intake is associated with the occurrence, progression, and poor prognosis of various tumors. A better understanding of the mechanisms underlying the functions of fructose in cancer could facilitate the development of better treatment and prevention strategies. In this study, we investigated the functional association between fructose utilization and pancreatic ductal adenocarcinoma (PDAC) progression. Fructose could be taken up and metabolized by PDAC cells and provided an adaptive survival mechanism for PDAC cells under glucose-deficient conditions. GLUT5-mediated fructose metabolism maintained the survival, proliferation, and invasion capacities of PDAC cells in vivo and in vitro. Fructose metabolism not only provided ATP and biomass to PDAC cells but also conferred metabolic plasticity to the cells, making them more adaptable to the tumor microenvironment. Mechanistically, fructose activated the AMP-activated protein kinase (AMPK)-mTORC1 signaling pathway to inhibit glucose deficiency-induced autophagic cell death. Moreover, the fructose-specific transporter GLUT5 was highly expressed in PDAC tissues and was an independent marker of disease progression in patients with PDAC. These findings provide mechanistic insights into the role of fructose in promoting PDAC progression and offer potential strategies for targeting metabolism to treat PDAC. SIGNIFICANCE: Fructose activates AMPK-mTORC1 signaling to inhibit autophagy-mediated cell death in pancreatic cancer cells caused by glucose deficiency, facilitating metabolic adaptation to the tumor microenvironment and supporting tumor growth.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Frutose , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Autofagia , Glucose , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
4.
J Exp Clin Cancer Res ; 42(1): 184, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507736

RESUMO

BACKGROUND: Fructose is a very common sugar found in natural foods, while current studies demonstrate that high fructose intake is significantly associated with increased risk of multiple cancers and more aggressive tumor behavior, but the relevant mechanisms are not fully understood. METHODS: Tumor-grafting experiments and in vitro angiogenesis assays were conducted to detect the effect of fructose and the conditioned medium of fructose-cultured tumor cells on biological function of vascular endothelial cells (VECs) and angiogenesis. 448 colorectal cancer specimens were utilized to analyze the relationship between Glut5 expression levels in VECs and tumor cells and microvascular density (MVD). RESULTS: We found that fructose can be metabolized by VECs and activate the Akt and Src signaling pathways, thereby enhancing the proliferation, migration, and tube-forming abilities of VECs and thereby promoting angiogenesis. Moreover, fructose can also improve the expression of vascular endothelial growth factor (VEGF) by upregulating the production of reactive oxygen species (ROS) in colorectal cancer cells, thus indirectly enhancing the biological function of VECs. Furthermore, this pro-angiogenic effect of fructose metabolism has also been well validated in clinical colorectal cancer tissues and mouse models. Fructose contributes to angiogenesis in mouse subcutaneous tumor grafts, and MVD is positively correlated with Glut5 expression levels of both endothelial cells and tumor cells of human colorectal cancer specimens. CONCLUSIONS: These findings establish the direct role and mechanism by which fructose promotes tumor progression through increased angiogenesis, and provide reliable evidence for a better understanding of tumor metabolic reprogramming.


Assuntos
Neoplasias Colorretais , Células Endoteliais , Frutose , Transportador de Glucose Tipo 5 , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Animais , Humanos , Camundongos , Neoplasias Colorretais/metabolismo , Células Endoteliais/metabolismo , Frutose/metabolismo , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Transportador de Glucose Tipo 5/metabolismo
5.
Light Sci Appl ; 12(1): 136, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37271759

RESUMO

Dynamic manipulation of electromagnetic (EM) waves with multiple degrees of freedom plays an essential role in enhancing information processing. Currently, an enormous challenge is to realize directional terahertz (THz) holography. Recently, it was demonstrated that Janus metasurfaces could produce distinct responses to EM waves from two opposite incident directions, making multiplexed dynamic manipulation of THz waves possible. Herein, we show that thermally activated THz Janus metasurfaces integrating with phase change materials on the meta-atoms can produce asymmetric transmission with the designed phase delays. Such reconfigurable Janus metasurfaces can achieve asymmetric focusing of THz wave and directional THz holography with free-space image projections, and particularly the information can be manipulated via temperature and incident THz wave direction. This work not only offers a common strategy for realizing the reconfigurability of Janus metasurfaces, but also shows possible applications in THz optical information encryption, data storage, and smart windows.

6.
Oncogene ; 42(27): 2166-2182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37221223

RESUMO

Due to the complexity and heterogeneity of breast cancer, the therapeutic effects of breast cancer treatment vary between subtypes. Breast cancer subtypes are classified based on the presence of molecular markers for estrogen or progesterone receptors and human epidermal growth factor 2. Thus, novel, comprehensive, and precise molecular indicators in breast carcinogenesis are urgently needed. Here, we report that ZNF133, a zinc-finger protein, is negatively associated with poor survival and advanced pathological staging of breast carcinomas. Moreover, ZNF133 is a transcription repressor physically associated with the KAP1 complex. It transcriptionally represses a cohort of genes, including L1CAM, that are critically involved in cell proliferation and motility. We also demonstrate that the ZNF133/KAP1 complex inhibits the proliferation and invasion of breast cancer cells in vitro and suppresses breast cancer growth and metastasis in vivo by dampening the transcription of L1CAM. Taken together, the findings of our study confirm the value of ZNF133 and L1CAM levels in the diagnosis and prognosis of breast cancer, contribute to a deeper understanding of the regulation mechanism of ZNF133 for the first time, and provide a new therapeutic strategy and precise intervention target for breast cancer.


Assuntos
Neoplasias da Mama , Molécula L1 de Adesão de Célula Nervosa , Humanos , Feminino , Molécula L1 de Adesão de Célula Nervosa/genética , Invasividade Neoplásica , Proliferação de Células/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Linhagem Celular Tumoral , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
Clin Chim Acta ; 540: 117224, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627008

RESUMO

The rapid development of next-generation sequencing (NGS) technology has promoted its wide clinical application in precision medicine for oncology. However, laborious and time-consuming manual operations, highly skilled personnel requirements, and cross-contamination are major challenges for the clinical implementation of NGS technology-based tests. The Automated NGS Diagnostic Solutions (ANDiS) 500 system is a fully enclosed cassette-dependent automated NGS library preparation system. This platform could produce qualified targeted amplicon library in three steps with only 15 min of hands-on time. Rigorous cross-contamination test using simulated contaminant plasmids confirmed that the design of disposable cassette guarantees zero sample cross-contamination. The BRCA1 and BRCA2 mutation detection panel and gastrointestinal cancer-related gene analysis panel for the ANDiS 500 platform showed 100% accuracy and precision in detecting germ-line mutations and somatic mutations respectively. Furthermore, those panels showed 100% concordance with verified methods in a prospective cohort study enrolling 363 patients and a cohort of 45 pan-cancer samples. In conclusion, the ANDiS 500 automated platform could overcome major challenges for implementing NGS assays clinically and is eligible for routine clinical tests.


Assuntos
Genes BRCA2 , Neoplasias , Humanos , Estudos Prospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação
8.
Sci Adv ; 8(41): eadd1296, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223473

RESUMO

Reconfigurable intelligent surfaces (RISs) play an essential role in various applications, such as next-generation communication, uncrewed vehicles, and vital sign recognizers. However, in the terahertz (THz) region, the development of RISs is limited because of lacking tunable phase shifters and low-cost sensors. Here, we developed an integrated self-adaptive metasurface (SAM) with THz wave detection and modulation capabilities based on the phase change material. By applying various coding sequences, the metasurface could deflect THz beams over an angle range of 42.8°. We established a software-defined sensing reaction system for intelligent THz wave manipulation. In the system, the SAM self-adaptively adjusted the THz beam deflection angle and stabilized the reflected power in response to the detected signal without human intervention, showing vast potential in eliminating coverage dead zones and other applications in THz communication. Our programmable controlled SAM creates a platform for intelligent electromagnetic information processing in the THz regime.

9.
Theranostics ; 12(9): 4127-4146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673569

RESUMO

Rationale: Angiogenesis is a fundamental process of tumorigenesis, growth, invasion and metastatic spread. Extracellular vesicles, especially exosomes, released by primary tumors promote angiogenesis and cancer progression. However, the mechanism underlying the pro-angiogenic potency of cancer cell-derived exosomes remains poorly understood. Methods: Exosomes were isolated from breast cancer cells with high metastatic potential (HM) and low metastatic potential (LM). The pro-angiogenic effects of these exosomes were evaluated by in vitro tube formation assays, wound healing assays, rat arterial ring budding assays and in vivo Matrigel plug assays. Subsequently, RNA sequencing, shRNA-mediated gene knockdown, overexpression of different EPHA2 mutants, and small-molecule inhibitors were used to analyze the angiogenesis-promoting effect of exosomal EPHA2 and its potential downstream mechanism. Finally, xenograft tumor models were established using tumor cells expressing different levels of EPHA2 to mimic the secretion of exosomes by tumor cells in vivo, and the metastasis of cancer cells were monitored using the IVIS Spectrum imaging system and Computed Tomography. Results: Herein, we demonstrated that exosomes produced by HM breast cancer cells can promote angiogenesis and metastasis. EPHA2 was rich in HM-derived exosomes and conferred the pro-angiogenic effect. Exosomal EPHA2 can be transferred from HM breast cancer cells to endothelial cells. Moreover, it can stimulate the migration and tube-forming abilities of endothelial cells in vitro and promote angiogenesis and tumor metastasis in vivo. Mechanistically, exosomal EPHA2 activates the AMPK signaling via the ligand Ephrin A1-dependent canonical forward signaling pathway. Moreover, inhibition of the AMPK signaling impairs exosomal EPHA2-mediated pro-angiogenic effects. Conclusion: Our findings identify a novel mechanism of exosomal EPHA2-mediated intercellular communication from breast cancer cells to endothelial cells in the tumor microenvironment to provoke angiogenesis and metastasis. Targeting the exosomal EPHA2-AMPK signaling may serve as a potential strategy for breast cancer therapy.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Receptor EphA2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Endoteliais/metabolismo , Efrina-A1/metabolismo , Exossomos/metabolismo , Feminino , Humanos , MicroRNAs/metabolismo , Neovascularização Patológica/patologia , Ratos , Transdução de Sinais/genética , Microambiente Tumoral
10.
ACS Appl Mater Interfaces ; 13(48): 57725-57734, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34814687

RESUMO

Since highly stretchable hydrogels have demonstrated their promising applications in flexible tactile sensors and wearable devices, the current challenge has been imposed on stretchable and multifunctional electronics. Here, we report a multifunctional sensor composed of a liquid metal (LM) nanodroplet-adhered self-assembled polymeric network, anionic carboxymethylcellulose (CMC), and cationic polyacrylamide (PAAm). The synergistic effect, zeta potential reduction, by CMC and macromolecules enveloped by LM contributes to the stabilization of the ternary system during preparation and, thus, the homogenization of the products. By engineering and optimizing the ternary hybrid hydrogels, excellent extensibility (tensile strain near 300%), readily reversible hysteresis loops, and accessible deformability (low modulus of 104 Pa) are afforded. The fabricated sensor exhibits a high tensile strain gauge factor of around 0.7 and a high compressive stress sensitivity of up to 0.12 kPa-1, a fast response time below 125 ms, and a high stability and precision in usage. In a series of practical scenarios, the assembled sensor displays distinguished abilities to monitor bodily motions, record electrocardiograms, authenticate handwriting, discern temperature, and infer materials, making them highly promising for multifunctional intelligent soft sensing.

11.
Front Cell Dev Biol ; 9: 719209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650973

RESUMO

ATP-binding cassette (ABC) transporter family are major contributors to the drug resistance establishment of breast cancer cells. Breast cancer resistant protein (BCRP), one of the ABC transporters, has long been recognized as a pump that effluxes the therapeutic drugs against the concentration gradient. However, recent studies suggest that the biological function of BCRP is not limited in its drug pump activity. Herein, the role of BCRP in the proliferation and survival of drug-resistant breast cancer cells was investigated. We found that BCRP is not the major drug pump to efflux epirubicin in the resistant cells that express multiple ABC transporters. Silencing of BCRP significantly impairs cell proliferation and induces apoptosis of the resistant cells in vitro and in vivo. RNA-sequencing and high-throughput proteomics suggest that BCRP is an inhibitory factor of oxidative phosphorylation (OXPHOS). Further research suggests that BCRP is localized in the mitochondria of the resistant cells. Knockdown of BCRP elevated the intracellular reactive oxygen species level and eventually promotes the cell to undergo apoptosis. This study demonstrated that BCRP exerts important onco-promoting functions in the drug-resistant breast cancer cells independent of its well-recognized drug efflux activity, which shed new light on understanding the complex functional role of ABC transporters in drug-resistant cells.

12.
Cancer Lett ; 519: 328-342, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34348188

RESUMO

Chemotherapy remains the most common treatment for all types of breast cancer. Chemoresistance in tumors is still a major obstacle for treating late-stage breast cancer. In the process of acquiring resistance, tumor cells dynamically evolve to adapt to the challenge of anti-cancer drugs. Besides the upregulation of drug-pumps, signal pathways related to proliferation and survival undergo adaptive evolution. Thus, these drug-resistant cells are more conducive to proliferation, even in stressful conditions. Nevertheless, the detailed mechanism that drives cancer cells to sustain their proliferation ability is unclear. Herein, we reported that the upregulated C-MET signaling acts as a compensatory mechanism that sustains the proliferation of chemoresistant cells in which EGFR family signaling was attenuated. Both C-MET and EGFR family are essential for cell proliferation due to their activation of the STAT3 signaling. Different from other cell models in which C-MET interacts with and phosphorylates EGFR family members, our cell model showed no direct interaction between C-MET and EGFR family members. Therefore, C-MET and EGFR family signaling pathways function independently to sustain the proliferation of resistant cells. Moreover, chemoresistant cells have evolved a novel, STAT3-C-MET feed-forward loop that plays a vital role in sustaining cell proliferation. The activated STAT3 interacts with the MET gene promoter to upregulate its transcription. Most importantly, the combined inhibition of C-MET and EGFR family synergistically inhibits the proliferation of drug-resistant cells in vitro and in xenograft tumor models. This work provides a new strategy for treating drug-resistant breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-met/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/genética , Inibidores de Proteínas Quinases/farmacologia
13.
Front Cell Dev Biol ; 9: 650748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869206

RESUMO

Hepatocellular carcinoma (HCC) is highly malignant; nearly half of the new cases and deaths are in China. The poor prognosis of HCC is mainly due to late diagnosis; many new biomarkers have been developed for HCC diagnosis. However, few markers are quickly translated into clinical practice; early and differential diagnosis of HCC from cirrhosis and/or hepatitis is still a clinical challenge. Metabolomics and biochemical methods were used to reveal specific serum biomarkers of HCC. Most of the elevated metabolites in HCC and HBV patients were overlapped compared with controls. Urea was the specifically elevated serum biomarker of HCC patients. Moreover, urea combined with AFP and CEA can improve the sensitivity of HCC diagnosis. The plasma ammonia of HCC patients was significantly higher than healthy controls. Co-culture cell model revealed normal liver cells cooperated with cancer cells to metabolize ammonia into urea. The urea metabolism in cancer cells marginally depended on the expression of CPS1. However, the expression of CPS1 did not change with ammonium chloride, which might regulate the urea cycle through enzyme activity. The urea cycle could detoxify high concentrations of ammonia to promote cancer cell proliferation. Therefore, urea was a by-product of ammonia metabolism and could be a potential serum biomarker for HCC. The combined application of metabolomics and biochemical methods can discover new biomarkers for the early diagnosis of HCC and be quickly applied to clinical diagnosis.

14.
Cell Death Dis ; 12(5): 414, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879771

RESUMO

Tumor metastasis induced by drug resistance is a major challenge in successful cancer treatment. Nevertheless, the mechanisms underlying the pro-invasive and metastatic ability of drug resistance remain elusive. Exosome-mediated intercellular communications between cancer cells and stromal cells in tumor microenvironment are required for cancer initiation and progression. Recent reports have shown that communications between cancer cells also promote tumor aggression. However, little attention has been regarded on this aspect. Herein, we demonstrated that drug-resistant cell-derived exosomes promoted the invasion of sensitive breast cancer cells. Quantitative proteomic analysis showed that EphA2 was rich in exosomes from drug-resistant cells. Exosomal EphA2 conferred the invasive/metastatic phenotype transfer from drug-resistant cells to sensitive cells. Moreover, exosomal EphA2 activated ERK1/2 signaling through the ligand Ephrin A1-dependent reverse pathway rather than the forward pathway, thereby promoting breast cancer progression. Our findings indicate the key functional role of exosomal EphA2 in the transmission of aggressive phenotype between cancer cells that do not rely on direct cell-cell contact. Our study also suggests that the increase of EphA2 in drug-resistant cell-derived exosomes may be an important mechanism of chemotherapy/drug resistance-induced breast cancer progression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Efrina-A1/metabolismo , Receptor EphA2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Exossomos/patologia , Feminino , Células HEK293 , Xenoenxertos , Humanos , Células MCF-7 , Camundongos SCID , Pessoa de Meia-Idade , Metástase Neoplásica , Transdução de Sinais
15.
Front Bioeng Biotechnol ; 8: 1010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984284

RESUMO

The development of biomimetic nanoparticles with functionalities of natural biomaterial remains a major challenge in cancer combination therapy. Herein, we developed a tumor-cell-derived exosome-camouflaged porous silicon nanoparticles (E-MSNs) as a drug delivery system for co-loading ICG and DOX (ID@E-MSNs), achieving the synergistic effects of chemotherapy and photothermal therapy against breast cancer. Compared with ID@MSNs, the biomimetic nanoparticles ID@E-MSNs can be effectively taken up by the tumor cell and enhance tumor accumulation with the help of the exosome membrane. ID@E-MSNs also retain the photothermal effect of ICG and cytotoxicity of DOX. Under 808 nm near infrared irradiation, ICG can produce hyperthermia to collapse E-MSNs nanovehicles, accelerate drug release, and induce tumor ablation, achieving effective chemo-photothermal therapy. In vivo results of 4T1 tumor-bearing BALB/c mice showed that ID@E-MSNs could accumulate tumor tissue and inhibit the growth and metastasis of tumor. Thus, tumor exosome-biomimetic nanoparticles indicate a proof-of-concept as a promising drug delivery system for efficient cancer combination therapy.

16.
ACS Appl Mater Interfaces ; 12(38): 43024-43031, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32875787

RESUMO

Biological muscles generally possess well-aligned muscle fibers and thus excellent strength and toughness. Inspired by their microstructure, tough wood hydrogels with a preserved unique alignment of cellulose fibers, mechanical anisotropy, and desirable flexibility were developed by introducing chemically and ionically cross-linked poly(acrylic acid) (PAA) into the abundant pores of delignified wood. PAA chains well infiltrated the parallelly aligned cellulose fibers of wood and formed a layer-by-layer network structure, resulting in strong, elastic tangential, and radial wood hydrogel slices. The tangential slices had a high compressive strength of 1.73 MPa and a maximum strain at fracture of 69.4%, while those of the radial slices were 0.6 MPa and 47.0%. After sandwiching the radial and tangential hydrogel slices with reduced graphene oxide (rGO) film electrodes into capacitive pressure sensors (CPSs), the tangential CPS displayed the most desired, gradient sensitivity values in the whole stress range. Additionally, the wrinkling treatment of the rGO electrode greatly improved the capacitance responsiveness toward pressure. The real-time sensing stress values of our tangential CPS during monitoring practical human activities were calculated in the range of 0.1-1.3 MPa, demonstrating the achievement of ultrafast, highly sensitive, and wide-stress-range detection for potential applications in human-machine interfaces.


Assuntos
Resinas Acrílicas/química , Hidrogéis/química , Madeira/química , Anisotropia , Eletrodos , Galvanoplastia , Tamanho da Partícula , Pressão , Propriedades de Superfície
17.
Cancer Biol Med ; 17(3): 707-725, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32944401

RESUMO

Objective: The tyrosine phosphatase SHP2 has a dual role in cancer initiation and progression in a tissue type-dependent manner. Several studies have linked SHP2 to the aggressive behavior of breast cancer cells and poorer outcomes in people with cancer. Nevertheless, the mechanistic details of how SHP2 promotes breast cancer progression remain largely undefined. Methods: The relationship between SHP2 expression and the prognosis of patients with breast cancer was investigated by using the TCGA and GEO databases. The expression of SHP2 in breast cancer tissues was analyzed by immunohistochemistry. CRISPR/Cas9 technology was used to generate SHP2-knockout breast cancer cells. Cell-counting kit-8, colony formation, cell cycle, and EdU incorporation assays, as well as a tumor xenograft model were used to examine the function of SHP2 in breast cancer proliferation. Quantitative RT-PCR, western blotting, immunofluorescence staining, and ubiquitination assays were used to explore the molecular mechanism through which SHP2 regulates breast cancer proliferation. Results: High SHP2 expression is correlated with poor prognosis in patients with breast cancer. SHP2 is required for the proliferation of breast cancer cells in vitro and tumor growth in vivo through regulation of Cyclin D1 abundance, thereby accelerating cell cycle progression. Notably, SHP2 modulates the ubiquitin-proteasome-dependent degradation of Cyclin D1 via the PI3K/AKT/GSK3ß signaling pathway. SHP2 knockout attenuates the activation of PI3K/AKT signaling and causes the dephosphorylation and resultant activation of GSK3ß. GSK3ß then mediates phosphorylation of Cyclin D1 at threonine 286, thereby promoting the translocation of Cyclin D1 from the nucleus to the cytoplasm and facilitating Cyclin D1 degradation through the ubiquitin-proteasome system. Conclusions: Our study uncovered the mechanism through which SHP2 regulates breast cancer proliferation. SHP2 may therefore potentially serve as a therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/patologia , Ciclina D1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Adulto , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 8(14): 23033-23047, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160565

RESUMO

Claudins are essential for the formation and maintenance of tight junctions (TJ). The altered expression of claudin proteins has been described in a variety of malignancies. However, the alteration of these proteins in lung adenocarcinoma (ADC) are poorly understood. Therefore, we report, based on the protein expression analysis of a total of 275 patient samples, that claudin-3 (CLDN3) expression is significantly increased in ADC tissues and is associated with cancer progression, correlating significantly with the poor survival of ADC patients (p=0.041&0.029). More importantly, forcing CLDN3 expression in ADC cells without endogenous CLDN3 expression resulted in significant increases in the cell proliferation, anchorage-dependent growth, migration and drug-resistance. In addition, epidermal growth factor (EGF) signaling pathway modulates the expression of claudins in a number of solid tumors. However, the mechanism of tight junction regulation by EGF in ADC remains unclear. To investigate this mechanisms, ADC cell lines were treated with EGF and its inhibitor. EGF unregulated CLDN3 expression via the MEK/ERK or PI3K/Akt signaling pathways and was required for the maintenance of baseline CLDN3 expression. Furthermore, downregulation of CLDN3 expression in ADC cell was found to prevent the EGF-induced increase in cell proliferation. In conclusion, our results demonstrate a novel role of CLDN3 overexpression in promoting the malignant potential of lung adenocarcinoma. This function is potentially regulated by the EGF-activated MEK/ERK and PI3K-Akt pathways.


Assuntos
Adenocarcinoma/metabolismo , Claudina-3/biossíntese , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Claudina-3/genética , Claudina-3/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...